llm_call_tool
llm_call_tool
: Direct Tool Invocation
llm_call_tool
: Direct Tool InvocationExplicitly instructs the language model to use specified tools with user input.
def llm_call_tool(
agent_name: str,
messages: List[Dict[str, Any]],
tools: List[Dict[str, Any]],
base_url: str = aios_kernel_url,
llms: List[Dict[str, Any]] = None
) -> LLMResponse
Parameters:
agent_name
: Identifier for the agent making the requestmessages
: List of message dictionariestools
: List of available tools and their specificationsbase_url
: API endpoint URLllms
: Optional list of LLM configurations
Returns:
LLMResponse
object containing tool calls and their results
Example:
# Use weather tool to get forecast
response = llm_call_tool(
"weather_agent",
messages=[
{"role": "user", "content": "What's the weather like in New York today?"}
],
tools=[{
"name": "weather_service/get_forecast",
"description": "Get weather forecast for a location",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string"},
"units": {"type": "string", "enum": ["metric", "imperial"]}
},
"required": ["location"]
}
}]
)
# Process the tool response
print(response["response"]["response_message"])
Last updated