AIOS Docs
  • Welcome
  • Getting Started
    • Installation
    • Quickstart
      • Use Terminal
      • Use WebUI
    • Environment Variables Configuration
  • AIOS Kernel
    • Overview
    • LLM Core(s)
      • LiteLLM Compatible Backend
      • vLLM Backend
      • Hugging Face Backend
      • LLM Routing
    • Scheduler
      • FIFOScheduler
      • RRScheduler
    • Context
    • Memory
      • Base Layer
      • Agentic Memory Operations
    • Storage
      • sto_mount
      • sto_create_file
      • sto_create_directory
      • sto_write
      • sto_retrieve
      • sto_rollback
      • sto_share
    • Tools
    • Access
    • Syscalls
    • Terminal
  • AIOS Agent
    • How to Use Agent
    • How to Develop Agents
      • Develop with Native SDK
      • Develop with AutoGen
      • Develop with Open-Interpreter
      • Develop with MetaGPT
    • How to Publish Agents
  • AIOS-Agent SDK
    • Overview
    • LLM Core API
      • llm_chat
      • llm_chat_with_json_output
      • llm_chat_with_tool_call_output
      • llm_call_tool
      • llm_operate_file
    • Memory API
      • create_memory
      • get_memory
      • update_memory
      • delete_memory
      • search_memories
      • create_agentic_memory
    • Storage API
      • mount
      • create_file
      • create_dir
      • write_file
      • retrieve_file
      • rollback_file
      • share_file
    • Tool API
      • How to Develop Tools
    • Access API
    • Post API
    • Agent API
  • Community
    • How to Contribute
Powered by GitBook
On this page
  1. AIOS Kernel

LLM Core(s)

PreviousOverviewNextLiteLLM Compatible Backend

Last updated 1 month ago

AIOS wraps different LLMs as LLM Cores to support the unified interface for addressing requests to both cloud LLM apis and locally-hosted LLMs.

AIOS supports three main categories of backends:

  1. LiteLLM compatible backends (cloud and local)

  2. vLLM backends (local)

  3. Huggingface backends (local)

Each backend type handles different input scenarios, including standard text generation, tool calling, and JSON-formatted responses. This document explains how each backend processes these inputs and the implementation details.

Feature
LiteLLM Compatible
vLLM
Huggingface

Standard Input

Uses completion function

Uses OpenAI client

Uses generate method

Tool Calls

Native support via tools parameter

Native support via tools parameter

Uses message merging and custom decoding

JSON Responses

Uses format="json"

Uses format="json"

Uses message merging

Different backend details are as below

Litellm compatible backends
vLLM backends
Huggingface local backends