Environment Variables Configuration
The configuration file can be found at the following relative path in your installation directory of AIOS:
aios/config/config.yaml
AIOS supports several API integrations that require configuration. You can use the following commands:
aios env list
: Show current environment variables, or show available API keys if no variables are setaios env set
: Show current environment variables, or show available API keys if no variables are setaios refresh
: Refresh AIOS configuration.Reloads the configuration from
aios/config/config.yaml
.Reinitializes all components without restarting the server.
The server must be running.
When no environment variables are set, the following API keys will be shown:
OPENAI_API_KEY
: OpenAI API key for accessing OpenAI servicesGEMINI_API_KEY
: Google Gemini API key for accessing Google's Gemini servicesDEEPSEEK_API_KEY
: Deepseek API key for accessing Deepseek servicesANTHROPIC_API_KEY
: Anthropic API key for accessing Anthropic Claude servicesGROQ_API_KEY
: Groq API key for accessing Groq servicesHF_AUTH_TOKEN
: HuggingFace authentication token for accessing modelsHF_HOME
: Optional path to store HuggingFace models
To obtain these API keys:
OpenAI API: Visit https://platform.openai.com/api-keys
Google Gemini API: Visit https://makersuite.google.com/app/apikey
Deepseek API: Visit https://api-docs.deepseek.com/
Anthropic Claude API: Visit https://console.anthropic.com/settings/keys
Groq API: Visit https://console.groq.com/keys
HuggingFace Token: Visit https://huggingface.co/settings/tokens
API Keys:
openai: "your-openai-key"
gemini: "your-gemini-key"
deepseek: "your-deepseek-key"
groq: "your-groq-key"
anthropic: "your-anthropic-key"
huggingface:
auth_token: "your-huggingface-token"
cache: "optional-path"
Model Settings:
openai
name
, backend
anthropic
name
, backend
name
, backend
ollama
name
, backend
, host_name
vLLM
name
, backend
, host_name
huggingface
name
, backend
, max_gpu_memory
, eval_device
The example of how to set up different models are as below
# LLM Configuration
llms:
models:
# OpenAI backend
# - name: "gpt-4o-mini"
# backend: "openai"
# Google Models
# - name: "gemini-1.5-flash"
# backend: "google"
# Anthropic Models
# - name: "claude-3-opus"
# backend: "anthropic"
# Ollama backend
# - name: "qwen2.5:7b"
# backend: "ollama"
# hostname: "http://localhost:11434" # Make sure to run ollama server
# HuggingFace backend
# - name: "meta-llama/Llama-3.1-8B-Instruct"
# backend: "huggingface"
# max_gpu_memory: {0: "48GB"} # GPU memory allocation
# eval_device: "cuda:0" # Device for model evaluation
# vLLM Models
# To use vllm as backend, you need to install vllm and run the vllm server https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html
# An example command to run the vllm server is:
# vllm serve meta-llama/Llama-3.2-3B-Instruct --port 8091
# - name: "meta-llama/Llama-3.1-8B-Instruct"
# backend: "vllm"
# hostname: "http://localhost:8091"
log_mode: "console"
use_context_manager: false
Memory Settings:
log_mode: "console" # can be "console" or "file"
Storage Settings:
root_dir: "root"
use_vector_db: true
Scheduler Settings:
log_mode: "console" # can be "console" or "file"
Last updated