AIOS Docs
  • Welcome
  • Getting Started
    • Installation
    • Quickstart
      • Use Terminal
      • Use WebUI
    • Environment Variables Configuration
  • AIOS Kernel
    • Overview
    • LLM Core(s)
      • LiteLLM Compatible Backend
      • vLLM Backend
      • Hugging Face Backend
      • LLM Routing
    • Scheduler
      • FIFOScheduler
      • RRScheduler
    • Context
    • Memory
      • Base Layer
      • Agentic Memory Operations
    • Storage
      • sto_mount
      • sto_create_file
      • sto_create_directory
      • sto_write
      • sto_retrieve
      • sto_rollback
      • sto_share
    • Tools
    • Access
    • Syscalls
    • Terminal
  • AIOS Agent
    • How to Use Agent
    • How to Develop Agents
      • Develop with Native SDK
      • Develop with AutoGen
      • Develop with Open-Interpreter
      • Develop with MetaGPT
    • How to Publish Agents
  • AIOS-Agent SDK
    • Overview
    • LLM Core API
      • llm_chat
      • llm_chat_with_json_output
      • llm_chat_with_tool_call_output
      • llm_call_tool
      • llm_operate_file
    • Memory API
      • create_memory
      • get_memory
      • update_memory
      • delete_memory
      • search_memories
      • create_agentic_memory
    • Storage API
      • mount
      • create_file
      • create_dir
      • write_file
      • retrieve_file
      • rollback_file
      • share_file
    • Tool API
      • How to Develop Tools
    • Access API
    • Post API
    • Agent API
  • Community
    • How to Contribute
Powered by GitBook
On this page
  1. AIOS Kernel
  2. Memory

Agentic Memory Operations

System Behavior

Evolution Operation

Automatic Merging of Highly Similar Memories

Identifies memories with content/semantic duplication exceeding thresholds, generates unified memory nodes, and establishes knowledge graph associations.

Dynamic Context Association Updates

Detects context drift, reconstructs semantic networks, and optimizes cross-scenario context anchors.

Intelligent Tag Unification

Analyze tag semantic overlap, create standardized tag systems, and build multi-level classification indices.

Autonomous Linking

Recognizes temporal patterns and constructs chronological memory chains.

Execution Flow:

  1. Input sanitization

  2. LLM-based semantic parsing

  3. JSON schema validation

  4. Error recovery mechanisms

Example Transformation:json

# Input
"Discovered new protein folding mechanism using AlphaFold2"

# Output
{
    "keywords": ["protein_folding", "AlphaFold2", "biochemical_discovery"],
    "context": "Scientific discovery in computational biology",
    "tags": ["AI_research", "biochemistry", "machine_learning"]
}

Evolution JSON Schema:

{
    "should_evolve": true,
    "evolution_type": ["merge", "context_update"],
    "affected_memories": ["mem_123", "mem_456"],
    "evolution_details": {
        "new_context": "Advanced protein folding techniques",
        "new_relationships": ["ML_models", "drug_discovery"]
    }
}
PreviousBase LayerNextStorage

Last updated 1 month ago